home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDOOOORRRRGGGGHHHHRRRR((((3333FFFF)))) DDDDOOOORRRRGGGGHHHHRRRR((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DORGHR - generate a real orthogonal matrix Q which is defined as the
- product of IHI-ILO elementary reflectors of order N, as returned by
- DGEHRD
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
-
- INTEGER IHI, ILO, INFO, LDA, LWORK, N
-
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DORGHR generates a real orthogonal matrix Q which is defined as the
- product of IHI-ILO elementary reflectors of order N, as returned by
- DGEHRD:
-
- Q = H(ilo) H(ilo+1) . . . H(ihi-1).
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- N (input) INTEGER
- The order of the matrix Q. N >= 0.
-
- ILO (input) INTEGER
- IHI (input) INTEGER ILO and IHI must have the same values as
- in the previous call of DGEHRD. Q is equal to the unit matrix
- except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI
- <= N, if N > 0; ILO=1 and IHI=0, if N=0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the vectors which define the elementary reflectors, as
- returned by DGEHRD. On exit, the N-by-N orthogonal matrix Q.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (N-1)
- TAU(i) must contain the scalar factor of the elementary reflector
- H(i), as returned by DGEHRD.
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= IHI-ILO. For optimum
- performance LWORK >= (IHI-ILO)*NB, where NB is the optimal
- blocksize.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-